Dry film thickness of intumescent coatings for structural steel bracing members

David Baron BEng MSc MIFireE Structural Fire Engineer

Project Overview

Overview - Steel in Fire

One way to insulate steel from fire is by applying an intumescent coating which reacts to heat to form a thick char that insulates the steel.

Overview - Braced Frames

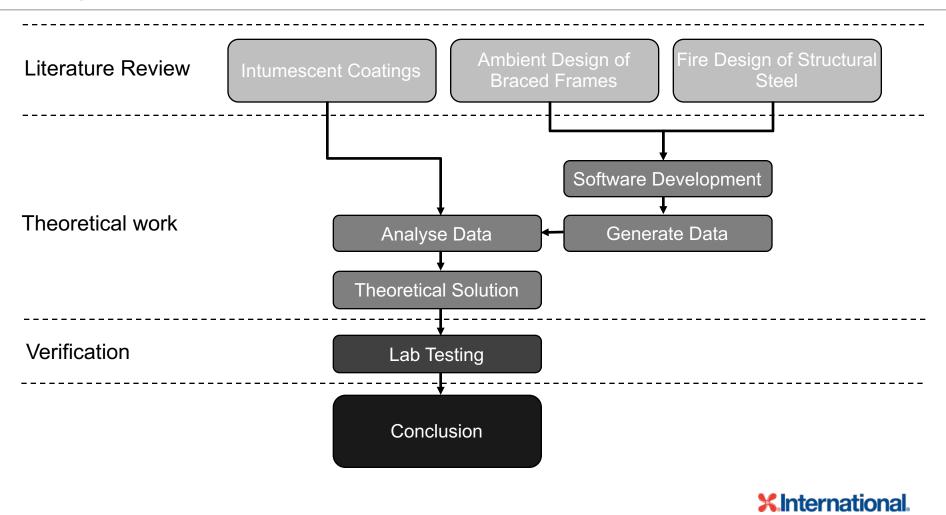
- Common form of steel construction used around the world.
- Economic and relatively simple to design.
- Bracing systems carry all lateral load so columns and beams only need to be designed against gravity loads.
- Bracing members can be crucial in maintaining the stability of a steel structure in the event of a fire

Overview – Current Guidance

"The apparent cost of fire protecting bracing members is often expected to be high because the members are comparatively light and therefore have high section factors and correspondingly require high thicknesses of fire protection.

fire protection thickness should be based on the section factor of the steel member, or a value of 200m-1, whichever is the smaller value."

Technical Issue:


- British standards have now been withdrawn (including BS5950-8).
- No technical justification has ever been given to show that 200 m⁻¹ is safe for Eurocode design.

Objectives:

- Determine whether the guidance for bracing members provided in BS5950-8 is safe for a Eurocode design.
- Present a solid technical justification for bracing members in the event of a fire based on Eurocode approaches.

Project Overview

Literature Review

Intumescent Coatings

Intumescent Coatings

Loading tables (derived by testing) are used to calculate required thicknesses of intumescent

Fire Duration (R): **120 mins**

Section Factor: 100 m-1 (A/V)


Limiting temperature (CCT): 550°C

Prescriptive limiting temperatures (CCT) for bracing members range from 500°C to 550°C globally

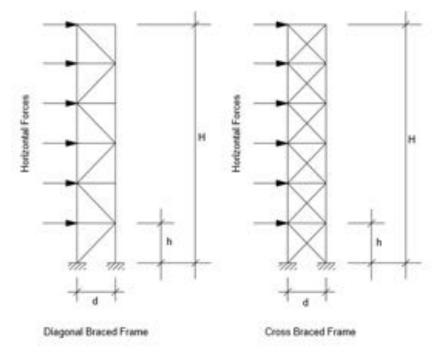
AN .	150"	400*	459*	500*	550"	600*	650"	100*
25	2 277	1.662	1.630	1.305	1.178	0.977	0.750	0.586
30	2.277	1.662	1.530	1.305	1.178	0.977	0.750	0.586
35	2.411	1.833	1.645	1.296	1.234	1.022	0.791	0.586
40	2.545	2.004	1,760	1.485	1.289	1.068	4.831	0.597
45	2 679	2.175	1.074	1.576	1.345	1.113	0.872	0.635
50	2.812	2.346	1.989	1.055	1.401	1.159	0.912	0.672
55	3.003	2.517	2.104	1.756	1.456	5.205	0.962	0.709
60	3.217	2,688	2.219		1.512	1.250	0.993	0.747
65	3.430	2,856	2.333	1.907	1.568	1.296	1 033	0.784
70	3.643	2.959	2.448	2 027	1.623	1.342	1 074	0.821
75	3.867	3.062	2.563	2.117	1.679	1.387	1.114	0.858
80	4.070	3.165	2.677	2.208	1,735	1.433	1.154	0.896
#5	4.284	3,268	2,792	2,298	1,790	1.479	1,195	0.933
90	4.497	3.371	2.505	2,388	1.846	1.524	1,235	0 970
95	4.711	3.474	2.968	2.478	1.982	1.670	1.276	1.008
100	4.995	3.577		2.568	1.957	1.615	1.315	1.045
105	5.296	3.681	3.125	2.659	2.813	1.661	1.366	1.082
110	5.597	3.784	3.203		2.069	1.787	1.397	1 120
115	6.097	3.887	3.282	2.839	2.124	1.752	1.437	1.957
120	6.158	3.990	3.361	2.905	2.180	\$ 790	1.478	1.194
125	6.495	4.093	3.439		2,235	1.644	1.518	1.232
130	6.800	4.196	3.518	3.029	2.291	1.889	1 558	1.269
135	7,105	4.299	3.597		2.347	1 935	1.699	1.306
140	7.401	4.402	3.675	3 153	2.483	1.980	1 629	1.344
145		4.505		3,215	2.458	2.026	1.680	1.381
150		4.608	3.833		2.554	2.072	1.725	1.418
155		4.712	3.911		2.570	2.117	1 768	1.455
160		4.847	3.990	3.452	2.625	2 163	1.801	1.493
165		5.001	4.068		2.681	2,229	1.841	1.530
170		5 155	4.147		2,737	2.254	1.882	1.567
125		6.309	4.226	3.588	2,792	2,300	1 922	1.605
180		5.463	4.304	3.650	2.848	2.345	1 962	1.642
185		5.617	4.303	3,710	2.918	2.391	2 000	1.679
190		5.771	4.462	3.775	2,568	2.437	2 043	1.717
195		5.925	4 540	3.837	3.059	2.482	2.084	1.754
200		6.079	4.619	3.899	3.129	2,528	2 124	1.791
205		6 233	4.698	3.961	3.290	2.574	2.164	1.629
210		6.387	4.803	4.023	3.270	2.679	2 205	1.855
215		6.541	4.960	4.005	3.341	2 665	2.245	1.903
220		6 695	5.118	4 148	3.411	2 710	2 295	1 940

Intumescent Coatings

Literature Review

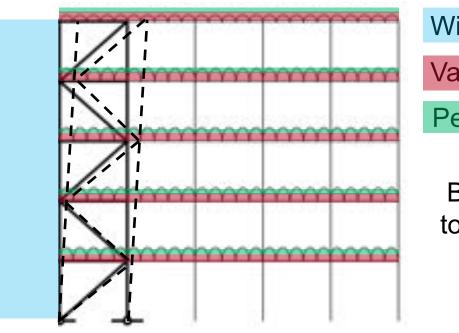
Ambient Design of Braced Frames

Structures in Fire


Ambient Design of Braced Frames

Braced frames resist horizontal forces by having bracing systems added vertically between columns which transfers horizontal loads to the foundations

Diagonal and cross braced configurations are very common forms of vertical bracing


Cross braced frame will only be subjected to tension

Diagonal braced frame can have both tension and compression forces.

Ambient Design of Braced Frames

- Wind loads
- Equivalent horizontal forces (EHF) due to imperfections

Wind

Variable Actions (Q)

Permanent Actions(G)

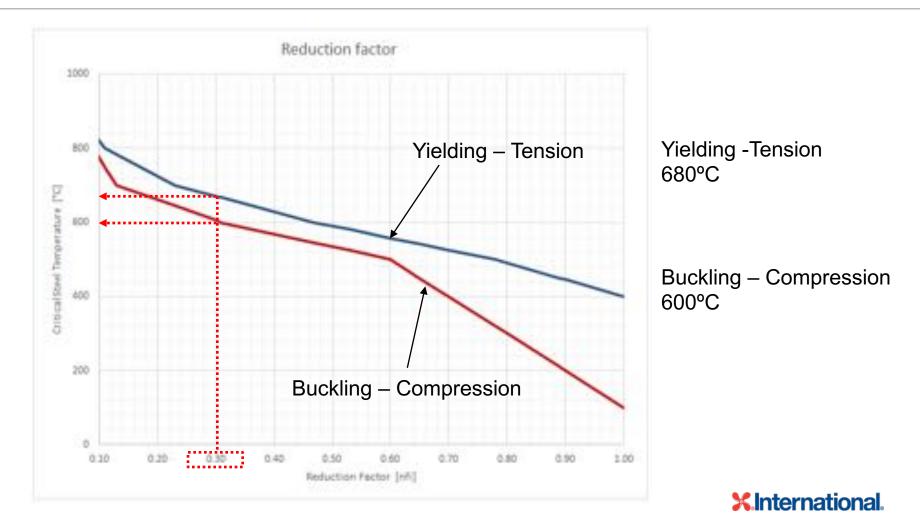
Bracing member sized to resist applied actions

Literature Review

Fire Design of Structural Steel

Fire Design of Structural Steel

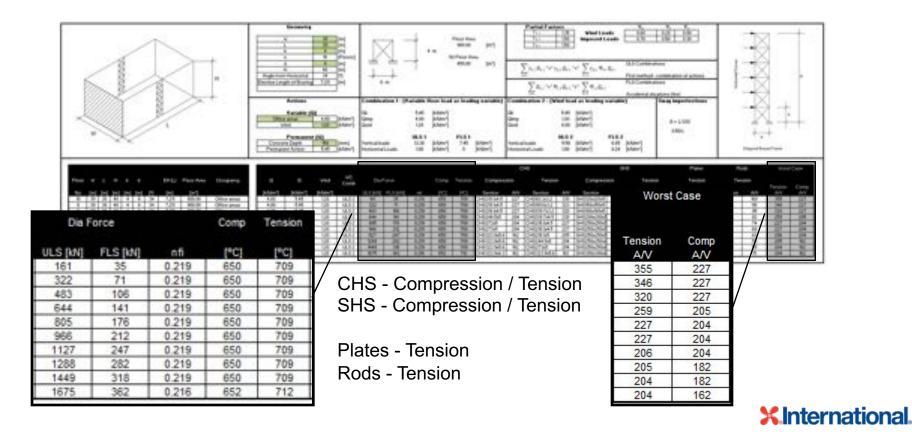
Temperature domain


 $\theta_d \leq \theta_{cr,d}$

where

- θ_d design value of material temperature
- θ_{cr,d} design value of the critical material temperature

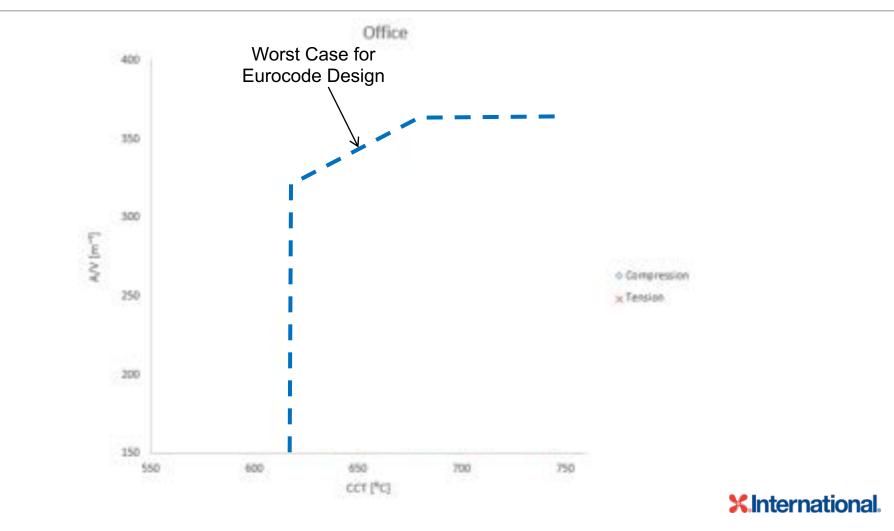
Fire Design of Structural Steel


Theoretical work

Software Development

Software Development

Design:

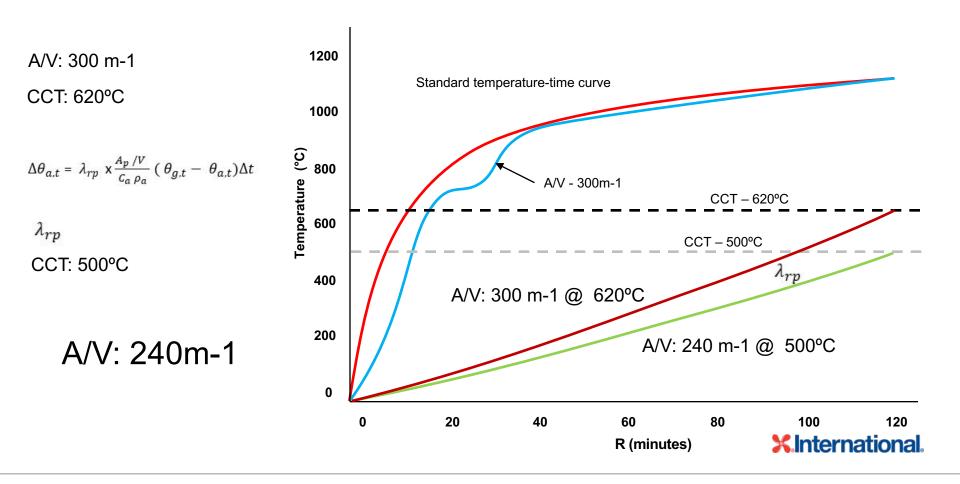

- Different floor geometries
- Different load cases

Generated data:

- Section factors A/V
- Tension and compression member CCTs

CCT vs A/V

Constant Thermal Conductivity


Thermal properties of materials can be used in numerical heat transfer calculations to predict temperature increases.

Heat source: Standard temperature-time curve

Material heat transfer properties:

- Thermal conductivity: λ (W/m.K)
- Density: ρ (kg/m3)
- Specific heat: c_p (J/kg.K)

RTC Calculations

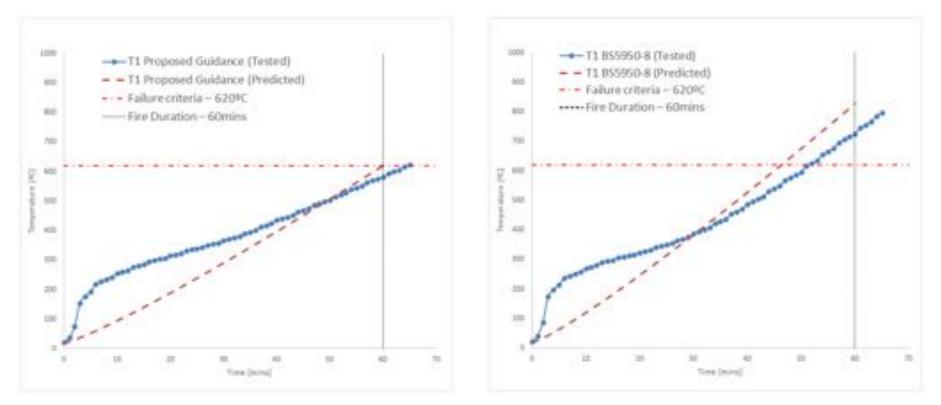
RTC Results

Modified A/V for Bracing Members [m ⁻⁺]				
Actual A/V [m ⁻¹]	550°C	500°C		
350	285	255		
300	265	240		
250	220	200		
200	175	160		

Verification

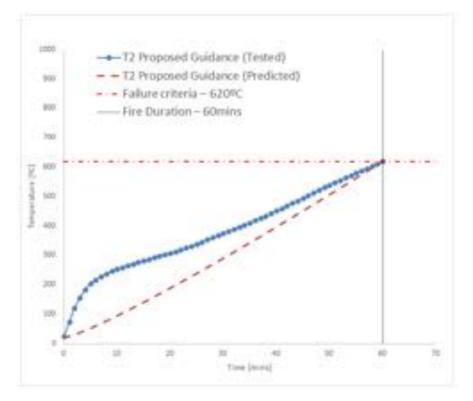
Lab Test

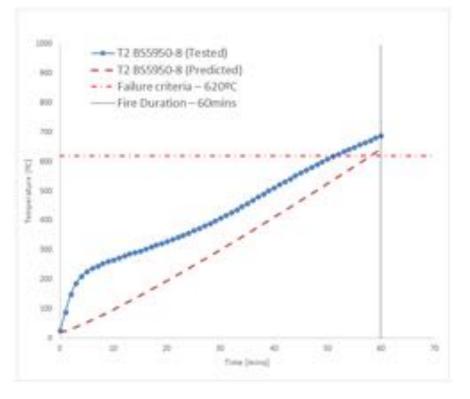
Product Type:	Solvent borne, Single pack acrylic Intumescent	
Fire Duration:	60 mins	
Failure Criteria:	Steel Temperature 620°C	


		Propose	d Guidance	B \$5950-8	
Test Reference	Actual A/V [m ⁻¹]	DFT @ 550°C	Modified A/V [m ⁻¹]	DFT @ 550°C	Modified A/V [m ⁻¹]
TI	305	2.33	267	1.49	200
TZ	235	1.56	207	1.49	200
T3 180		1 09	157	1.29	180

TEST 1 – 305 m-1

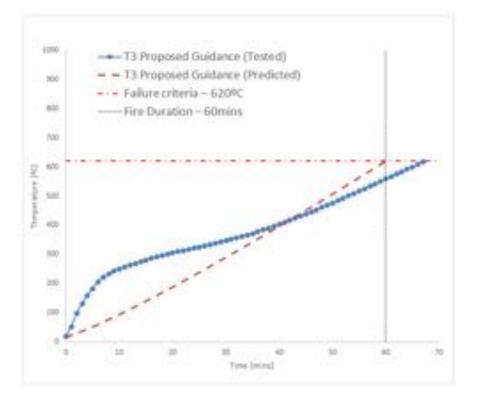
Proposed Guidance

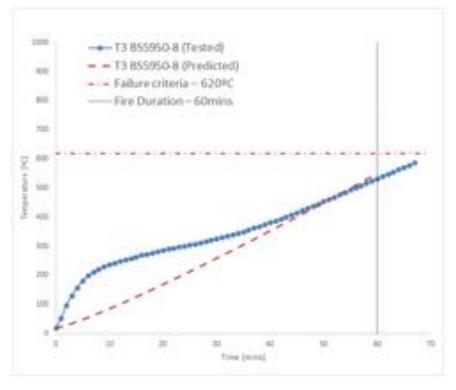

BS5950-8



TEST 2 – 235 m-1

Proposed Guidance


BS5950-8



TEST 3 – 180 m-1

Proposed Guidance

BS5950-8

Lab Results

The proposed guidance insulated the steel to the failure criteria of 620°C for the given fire duration as predicted by RTC calculations

The guidance of BS5950-8 under insulated in tests T1 and T2 and over insulated T3 as predicted by RTC calculations

Temperatures predicted using relative thermal conductivities were only a maximum of 10% out from the observed results

Relative thermal conductivities can be used as a method to correlate the performance of intumescent coatings for a given set of conditions against existing certified data.

Conclusions

Conclusions

The guidance of BS5950-8 appears only safe (based on Eurocode design) for a small range of section factors

The proposed method shows that equivalent protection can be achieved using modified section factors at prescriptive temperatures

Thank you for your attention