Tensile Membrane Action of Composite
Slabs in Fire

Are the current methods really OK?

lan Burgess
University of Sheffield, UK
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Max beam temperature ~1150°C

cf. Code critical temperature ~ 680°C




AHowing for membrane action in the
plastic anatvsis of rectingular reinforead
concrete slabs
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Small-deflection yield-line mechanism — slab only
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Large-deflection failure crack
sometimes observed in tests
and used by Hayes.

Yield-line pattern is optimized
for minimum concrete slab
failure load.




Equilibrium 1 — no through-depth YL cracks - Hayes
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Compression!

Tension

Criterion: Cracks from Rationale: Superposition of rebar
intersection. Moment tension and concrete compression
equilibrium about E. Finds b force/unit length.

and k. 5
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Both b and k are constant for Rationale: Superposition of rebar
each of the 2 cases. No tension and concrete compression
variation with deflection. force/unit length.
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“Membrane force” enhancements:

e;m Moment of membrane forces about 11/total resistance
moment about x-axis at initial YL.

e,» Moment of membrane forces about 22/total resistance
moment about y-axis at initial YL.

These start at zero for zero deflection

Resistance moment enhancement (reduction)

e;,  Proportional change of resistance moment about x-axis due

to membrane compression.
e,, Proportional change of resistance moment about y-axis due

to membrane compression.




Bending “enhancements” - Hayes

Wood’s equation for reduction of moment capacity of a rectangular RC cross-
section due to axial compression:
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2. Short-span reinforcement: —— =1+ 4' —— B' —
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These are integrated in x- and y- directions respectively for the bending
moments across the yield lines for Portions 1 and 2.



Forming an overall enhancement factor - Hayes

e1 = eym Tt e1p
These are nearly always unequal

€2 = €am T €20 (WHY?). Puttogether as
€1 — €z
e =e —
Overall enhancement factor 1711 210
v z
/R X . :
\ These don’t include any vertical shear between
/ y the facets. If these are included there is only
N one enhancement factor.
l o / (Tony Gillies 2015)
v New enhancement e, — e,
Factor equivalent to =G = 2
Vertical shear 1+ 2una
resultants across

yield lines



Any problems so far?

e The membrane traction distribution is an assumption.

It corresponds to unfractured mesh and either:

* No through-depth cracks along yield lines.
* Partial through-depth cracks along yield lines.

* Both of these distributions apply only to the case where a
lateral through-depth crack has formed across the short
span through the YL intersection.

e Distribution is fixed for each case. Enhancement factor
starts below 1.0 — actually at zero.

* Internal forces don’t depend on deflection.
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Structural fire resistance methods for composite floors

—— 1| BRE Method (Bailey 2000)

B wich, - behaw’ourofsteel ° AmendEd VerSion Of HayeS’S

& 0 P
Ject o fire: '»"a'i?‘,':"%,f',.f?&‘ o
: method.

* Fire Safe Design (SCI P288)
checked using BRE-Bailey design
method.

New Zealand SPM (Clifton 2006)
FRACOF (2011)
* Based on a European project.

 Almost identical to BRE method.
MEMBRANE AcTion o A few changes to safety factors,
TRUCTUREs | )
S8 extra deflection check.
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Typical design strategy for TMA

* Protect members on
column gridlines.

* Leave intermediate
secondary beams
unprotected.

* Design individual panels
without continuity.
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BRE/FRACOF method

e Unprotected composite * Concrete slab carries
beams at high temperature remaining load in tensile
carry some of the load as membrane action. Needs
simply supported. enough deflection.
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Small-deflection yield-line mechanism — slab only
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\, Tensile crack across
short mid-span
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BRE/FRACOF

Large-deflection failure crack
observed in tests and used in
Bailey/BRE, FRACOF and NZ
SPM.

The analysis is based on the
optimal yield-line pattern for
the concrete slab without
considering the steel beams.
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Force equilibrium — no through-depth YL cracks — BRE etc

_kbKT,

This is the only mechanism —
no separation of concrete
along the yield lines.

o |
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(Ultimate strength
of reinforcement
across Fracture)

1.1T /2 <G

Criterion: Crack across

equilibrium about E.

mid-long-span. Moment l
Finds b and k.
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TMA enhancement calculations — BRE/FRACOF

Similarly to Hayes:

Horizontal force equilibrium
assuming mid-span crack. (But
only the linear membrane
traction distribution).

Separate “membrane”
enhancements e;,,and e,,, by
moments about long and short
edges.

Add “bending” enhancements
e;, and e,, to make e; and e.,.

Overall enhancement factor

e|—e
e=e ———
1+2ua?
T eq1—e
..orGillies e=¢; ———=
1+2una

Cutoff at enhancement 1.0 for
aspect ratios > 1.0.

Enhancement factor

2.5 1

2.0 1
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=—=BRE 1.0 —Gillies 1.0
—=BRE 1.5 —Gillies 1.5
==BRE 2.0 —Gillies 2.0
e BRE 3.0 —Gillies 3.0

4 5 6 7 8

8/d;
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Limiting deflection (central cracking) criterion
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Back to basics
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Increasing deflection of yield-line mechanism

Yield-line mechanism is a . yd
plastic bending mechanism at . MechanismB”
small deflections. Yield lines N <
are essentially discrete cracks. ./'/ AN
N
/// \\

As deflections start to increase
the yield-line pattern increases
the rotations of its flat facets,
with the rebar yielding until it
fractures.

So the initial large-deflection
mechanism is this one.
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Geometry of yield-line crack opening

CRACK OPENING AT REBAR LEVEL TOP SURFACE OF SLAB

As deflections start to increase the yield-line
pattern increases the rotations of its flat facets, and
rebar yields across cracks until it fractures.
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Force equilibrium of Mechanism B

Shape of concrete compression blocks is dictated by
compatibility and equilibrium:

 |nitially tension and compression at every point of yield-
lines.

* As deflection increases concrete compression blocks
concentrate towards slab corners, rebar fractures when
its strain exceeds its ductility.

* No tension within compression blocks
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Compression

Shape of concrete compression blocks is dictated by
compatibility and equilibrium:

* Initially tension and compression at every point of yield-

lines.

* As deflection increases concrete compression blocks

concentrate towards slab corners, rebar fractures when

its strain exceeds its ductility.

* No tension within compression blocks

‘\[ Tension ]
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Compression

Shape of concrete compression blocks is dictated by
compatibility and equilibrium:

 |nitially tension and compression at every point of yield-

lines.

* As deflection increases concrete compression blocks

concentrate towards slab corners, rebar fractures when

its strain exceeds its ductility.

* No tension within compression blocks

‘\[ Tension ]
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Compression

Shape of concrete compression blocks is dictated by
compatibility and equilibrium:

 |nitially tension and compression at every point of yield-

lines.

* As deflection increases concrete compression blocks

concentrate towards slab corners, rebar fractures when

its strain exceeds its ductility.

* No tension within compression blocks

‘\[ Tension ]
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Compression

Shape of concrete compression blocks is dictated by
compatibility and equilibrium:

 |nitially tension and compression at every point of yield-

lines.

* As deflection increases concrete compression blocks

concentrate towards slab corners, rebar fractures when

its strain exceeds its ductility.

* No tension within compression blocks

‘\[ Tension ]
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Compression

Shape of concrete compression blocks is dictated by
compatibility and equilibrium:

 |nitially tension and compression at every point of yield-

lines.

* As deflection increases concrete compression blocks

concentrate towards slab corners, rebar fractures when

its strain exceeds its ductility.

* No tension within compression blocks

‘\[ Tension ]
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Compression

| o .

Shape of concrete compression blocks is dictated by \[ Tension }

compatibility and equilibrium:

 |nitially tension and compression at every point of yield-
lines.

* As deflection increases concrete compression blocks
concentrate towards slab corners, rebar fractures when
its strain exceeds its ductility.

* No tension within compression blocks
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Compression
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Shape of concrete compression blocks is dictated by \L Tension ]

compatibility and equilibrium:

 |nitially tension and compression at every point of yield-
lines.

* As deflection increases concrete compression blocks
concentrate towards slab corners, rebar fractures when
its strain exceeds its ductility.

* No tension within compression blocks
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Change of stress blocks — possibilities with less ductility
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Unfracture

With different rebar
ductility, mesh can
either fracture abruptly
or progressively at any
stage.

Tension ]

Mid YL fractured
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Change of stress blocks — possibilities with less ductility
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Unfracture
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With different rebar
ductility, mesh can

either fracture abruptly Mid YL fractured
or progressivelyatany | ———————————————
stage.

Tension ]

Diagonals unzipping
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Change of stress blocks — possibilities with less ductility
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With different rebar
ductility, mesh can |
either fracture abruptly Mid YL fractured
or progressivelyatany | ——
stage.

Tension ]

Diagonals unzipping
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Garston test comparison
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* Slab aspect ratio 1.4706 (6.360m x ¢ A142 mesh (142 mm? per metre, 580MPa
9.353). steel at 200mm spacing in x and y

e 120mm thick. 52MPa concrete: directions) at 69mm effective depth;
 Edges vertically supported. *  Mesh ductility 12%.
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Garston comparison for different aspect ratios
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Garston — apply tensile strength to change mechanism
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New mechanism — central through-depth crack

APl &
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Change of stress blocks — ductile y-reinforcement
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Change of stress blocks — ductile y-reinforcement
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From basic mechanism to centrally cracked
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With attached steel
beams ...

... the yield-line mechanism changes.
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Forces on the x-aligned mechanism

Unprotected beams at
high temperature
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Forces on the y-aligned mechanism
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Unprotected beams at
high temperature
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Combinations of compression block and rebar fracture
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Reinforcement mesh fracture level (x-aligned mechanism)

Compression block . Central + | Central + | Central +

None | Centraly | Diag. x ) : .

Diag.y Diag.x |Diag.x, vy
Full above mesh al al’ al* g1** al* g ***
below mesh a2 a2’ a2* a2** a2*’ 92 % **
Triangular above mesh bl bl’ bl* b1** b1* p1***
below mesh b2 b2’ b2* b2 ** b2*’ p2 ***
Trapezoidal cl cl’ cl* cl** c1* NELL
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Example of application: 9m x 6m composite slab

| 9m

e 130mm thick slab, 30MPa
concrete;

* A142 mesh (142 mm? per
metre, 500MPa steel at
zoommspacinginxandy - R R R R R EEEEEEEEEEEEEE = 6m
directions) at 60mm effective
depth;

* Mesh effective ductility (over
200mm length) 1%: fracture
crack-width 2mm;

* One central downstand steel 130
beam, 305x165UKB40, Grade 60
S275 - unprotected against 6 —>
fire;

305

* Edges vertically supported.

10 165 44
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Unprotected beam temperature (°C)
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Maximum steel temperature enhancements
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Maximum tensile stress at section A
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In summary ...

Existing simplified methods:

For concrete slabs:

* Fixed membrane traction distribution — independent of slab
deflection.

* Membrane traction distribution only valid while concrete has
compression along whole yield lines.

* Assumes central crack fully formed. Rebar at ultimate strength
(+10%)

e Enhancement factor starts below 1.0.

For composite slabs in fire:

* Yield-line pattern based on non-composite slab.

* Superposes high-temperature composite beam capacity and
deflection-controlled slab enhancement.

e Criterion for mid-span through-depth crack is meaningless.
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In summary ...

The new approach:
For all slabs:

 Based on the kinematics of deflecting flat facets of the small-deflection
yield line mechanism, together with in-plane equilibrium of the
concrete and steel forces.

 Allows concrete stress blocks to move and mesh to fracture across
yield lines.

For composite slabs in fire:

 Keeps load constant, allows beams temperature to increase until yield
line mechanism forms.

* Enhancement of steel beam temperature with deflection.

Biggest problems to be solved:

* Fracture ductility of rebar across discrete cracks - yield lines or
through-depth mid-span crack.

* Concrete tensile stress to initiate the mid-span (or intersection) crack.
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Thank you
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