Numerical investigation of the structural behaviour of rectangular tunnels exposed to fire

<u>Thomas Thienpont</u> & Ruben Van Coile

SFE@UGent - Ghent University 10.05.2024

Part 1 Introduction

Introduction

Introduction

Maluk, C. (2017).

Jansson, R. (2013).

Introduction

How do shallow tunnels perform in case of fire, taking into account spalling?

Part 2 Model setup

Tunnel models

2D analysis

Tunnel model

2D analysis

- Divided into sections
- Lumped rebars

Section 1b	Section 2b	Section 3b
L = 500 mm	L = 500 mm	L = 500 mm
B = 350 mm	B = 408.33 mm	B = 525 mm
R1 = 494 mm ²	R1 = 494 mm ²	R1 = 494 mm ²
R2 = 1163.55 mm ²	R2 = 2072.6 mm ²	R2 = 2072.6 mm ²
C1 = 73.2 mm	C1 = 73.2 mm	C1 = 73.2 mm
C2 = 61.1 mm	C2 = 61.1 mm	C2 = 61.1 mm
Cold	Cold	Cold
Hot	Hot	Hot

Heat transfer analysis

Fire regime

- RWS curve
- incl. exponential cooling

$$\theta_{c} - \theta_{ref} = \left(\theta_{RWS} - \theta_{ref}\right) exp\left(-b(t - t_{RWS})\right)$$

where:

 θ_{ref} = reference temperature (20°C) θ_{RWS} = temperature at the end of exposure to RWS curve b = parameter for controlling rate of cooling (set to 0.025 min⁻¹) t = time (in minutes) since onset of cooling phase t_{RWS} = time (in minutes) of since onset of RWS fire

Heat transfer analysis

Spalling model

- Constant spalling rate (e.g. 5 mm/min)
- Onset of spalling = 1 minute (deemed conservative)
- Spalling stops when rebar is reached, or at onset cooling phase

Part 3 Four-lane tunnel

CASE 1

Four-lane tunnel

Heat transfer analysis

0.75 m soil

Four-lane tunnel, 120 min RWS, no spalling

15

Heat transfer analysis

Four-lane tunnel, 120 min RWS, spalling 5 mm/min

16

Four-lane tunnel, 120 min RWS, no spalling

FILE : RWS_model3 NODES : 297 BEAMS : 148 SPRINGS : 24

BEAMS PLOT

DISPLACED CONFIGURATION (x5) RESULTS ON DISPLACED CONF. REACTIONS PLOT BENDING MOMENT MZ PLOT

TIME : 39.5 sec

BEAMS :

Beam Element

Reactions in N

Bending moments in N.m

Four-lane tunnel, 120 min RWS, no spalling

0.75 m soil

4.7 m

Four-lane tunnel, 120 min RWS, no spalling

Four-lane tunnel, 120 min RWS, no spalling

Summary

- Tunnel survives full duration of fire
- Moment line changes significantly during heating and cooling
- Large residual deformations
- Damage at unexposed sides
- Plastic hinges (locations where steel exceeds yield strain)

4-lane tunnel, 120 min RWS, spalling 5 mm/min

4-lane tunnel, 120 min RWS, spalling 5 mm/min

4-lane tunnel, 120 min RWS, spalling 5 mm/min

Summary

- Tunnel collapses after 15-20 minutes
- Collapse shortly after steel is directly exposed to fire

Part 4 Double layer tunnel

CASE 2

Double layer tunnel

CASE 2 Double layer tunnel, 120 min RWS, no spalling

Diamond 2016 for SAFIR FILE : KWA NODES : 315 BEAMS : 160 SPRINGS : 18 BEAMS PLOT SPRINGS PLOT DISPLACED CONFIGURATION (x10) RESULTS ON DISPLACED CONF. BENDING MOMENT MZ PLOT TIME : 20 sec BEAMS : Beam Element SPRINGS : Spring Element Bending moments in N.m

CASE 2 Double layer tunnel, 120 min RWS, no spalling

CASE 2 Double layer tunnel, 120 min RWS, no palling

CASE 2

Double layer tunnel, 120 min RWS, spalling 5 mm/min

CASE 2

Double layer tunnel, 120 min RWS, spalling 5 mm/min

Summary

- Similar to case without spalling
- Larger deflections
- Plastic hinge in the cooling phase

Part 5 Conclusions

Conclusions

2D Finite Element Model

- Versatile and quick model evaluations
- Accounts for complex stress state and irreversible non-linear material properties
- Assessment of damage and residual deformation after fire (in case of no collapse)

CASE 1: four-lane tunnel

- No spalling: no collapse, damage unexposed side (plastic hinges) and permanent deflections
- Spalling: collapse fire exposed tube

CASE 2: Double layer

- No spalling: no collapse, limited deflections
- Spalling: no collapse, more severe deflections and plastic hinges

Key messages and discussion points

- Structural fire performance of concrete tunnels is **severely affected by spalling**
- Behaviour depends on tunnel geometry
- **Significant post-fire damage**, also in cases without spalling,
- **Cooling phase** behaviour important

- How to link fire scenario and spalling assumptions?
- How to deal with **shear**?

Thomas Thienpont

SFE@UGent - Ghent University 10.05.2024

