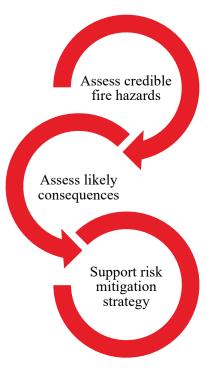
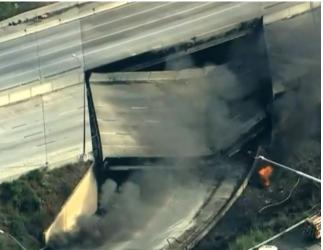
Framework for Fire Risk Assessment of Bridges Structures in Fire Forum May 2024

Anna Benoit, Yavor Panev

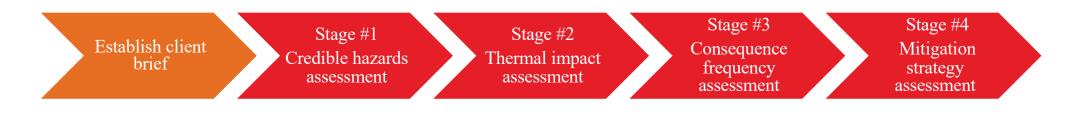

Commercial experience

United Kingdom


- 7-8 bridge projects
- Bridge spans 0.5 to 6 km
- 2 to 8 lanes of traffic
- Cycling and pedestrian use
- Wide range of design fires including vehicle, boat, train, wildfire, dangerous goods, and industrial activity fires assessed.

Core objectives

Hazard: Road tanker fire under bridge deck (179, Philadelphia, 2023)



Consequences: Structural collapse and major operational disturbance

Fire Risk Appraisal Process

Method overview

Client brief

Method overview

- Scope of risks
- Scope of risk appraisal stages
- Regulatory and contractual framework
- Any client risk tolerability parameters
- Project deliverables and deadlines

#1 Credible hazards assessment

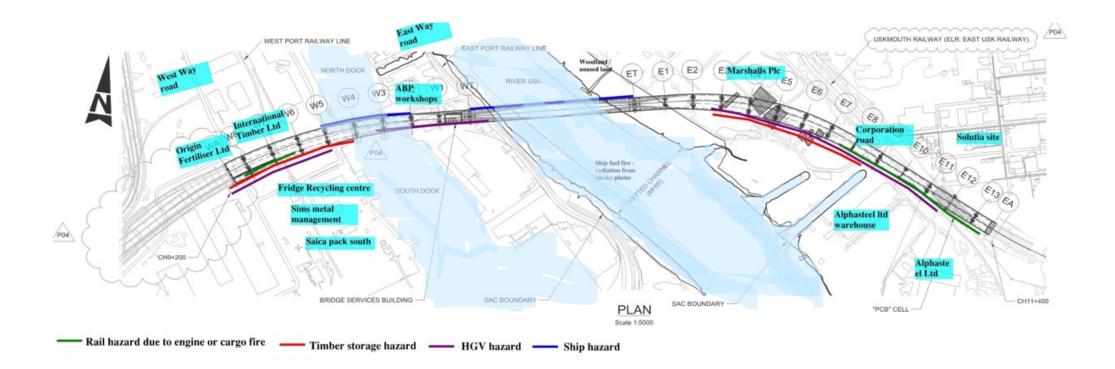
Examples

HGV fire on bridge deck

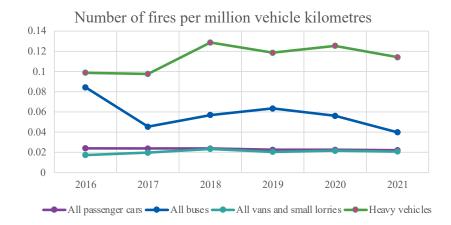
Industrial fire below the bridge deck

Pool fire on bridge deck

Wildfire in the vicinity of the bridge


BLEVE on bridge deck

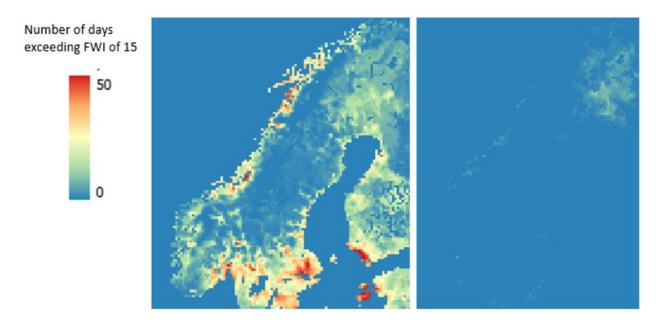
Passenger car fire


#1 Credible hazards assessment

Hazard location mapping

#1 Credible hazards assessment

Quantified statistical analysis


 $P_{ig} = \lambda f L$

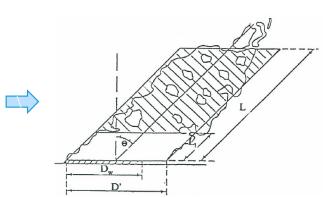
 P_{ig} : probability of ignition λ : annual base rate f: annual traffic frequency L: credible threat zone

	Probability of ignition		
Fire hazard	Annual frequency	Mean return period (years)	
Passenger car	1.1E-01	9	
Small lorry	3.5E-02	29	
Bus	5.0E-02	20	
HGV	1.4E-01	7	
HGV Flammable Goods	1.2E-04	8702	
Road tanker	2.5E-04	3996	
Liquid spill	2.3E-04	4440	
Gas tanker jet	2.6E-04	4258	

#1 Credible hazards assessment

Quantified statistical analysis

Fire weather index projections for 2060. Left: emissions continue to rise without intervention (RCP 8.5). Right: emissions decline after 2020 (RCP 2.5) Wildfire hazards assessed based on


- Past local incidents
- Local fire weather index projections
- Carbon emission trajectories (RCPs)

#2 Thermal impact assessment

Analytical and numerical model approximations

Real life photograph of tanker fire

Design fire approximation

Establish key fire parameters:

- Footprint area
- Heat release rate
- Burnout time
- Flame temperature
- Flame height
- Emissive power

#2 Thermal impact assessment

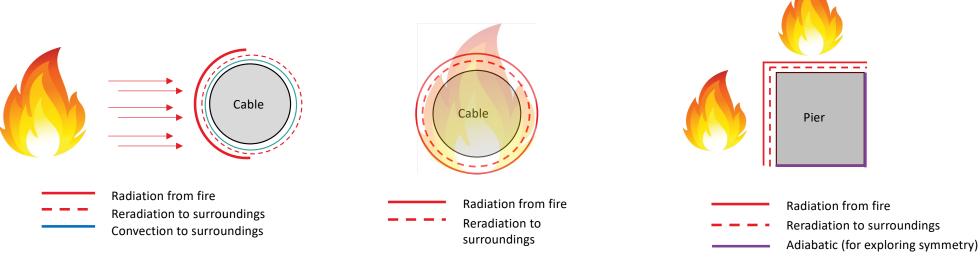
Appreciation of different escalation scenarios from root hazard

Fire contained within the tank

BLEVE and/or fireball + explosion risk

Fuel spilled on road deck

#2 Thermal impact assessment

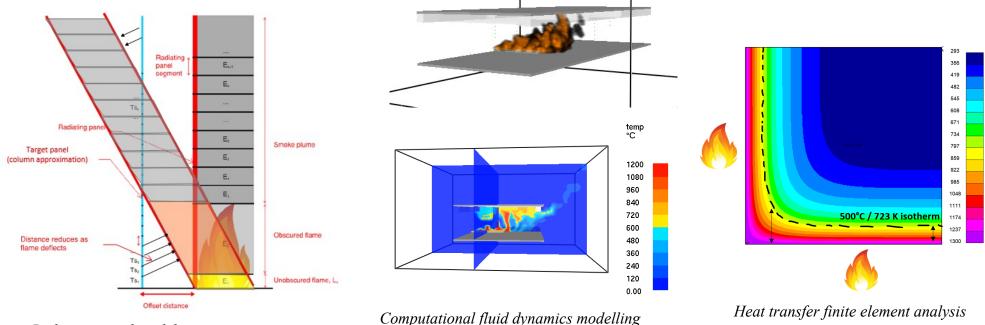

Design fires review

Design fire scenario description	Heat release rate (MW)	Burnout time (min)	Fire footprint size (m)	Growth to peak HRR (min)
Passenger car	3 - 6	15-30	3x1.8 - 6x2.2	4 - 6
Small lorry	6 - 20	30 - 60	6x2.2 - 10x2.2	6 - 11
Bus	10 - 30	30 - 60	7x2.55 - 13x2.55	8 - 13
Heavy goods vehicle (HGV)	30 - 100	240 - 300	7x2.55 - 14.5x2.55	7 – 24
Fuel contained within the tanker (tanker fire)	50 - 70	238 - 273	8x2.55 m – 11x2.55 m (tanker footprint)	Instantaneous
Instantaneous spill	~ 11,000	1.7 (101 s)	75 m ² (pool diameter)	Instantaneous
Continuous spill from 80 mm to 100 mm diameter hole	136 - 290	30 - 34	8.4 m – 12 m (pool diameter)	Instantaneous
LPG at operating conditions (20 °C @ 863 kPa)	10-93	208 – 1,878 (HRR dependant)	1.1 – 3.5	Instantaneous
LPG at elevated temperature conditions (70 °C @ 2,482 kPa)	28 - 256	76 – 685 (HRR dependant)	1.2 - 3.5	Instantaneous

#2 Thermal impact assessment

Analytical and numerical model approximations

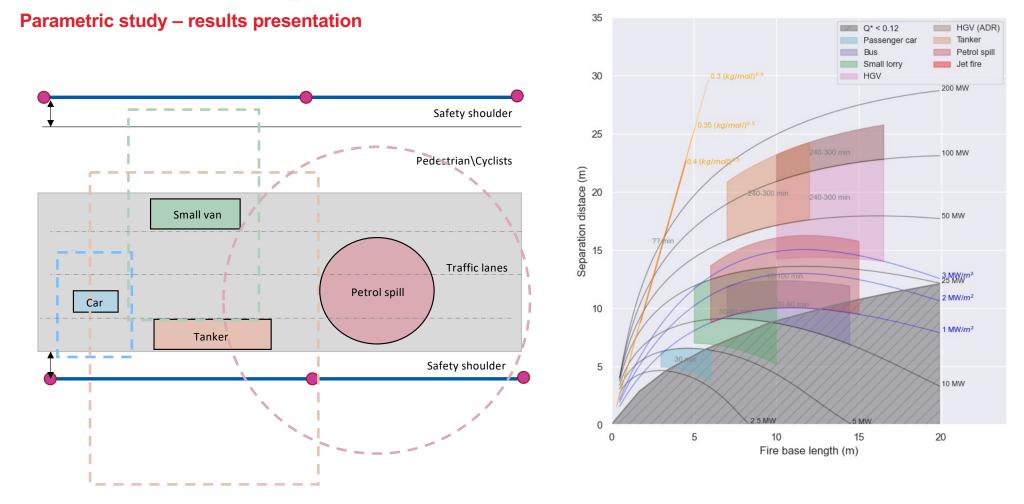
• Heat transfer to key bridge components usually assessed on a single element basis



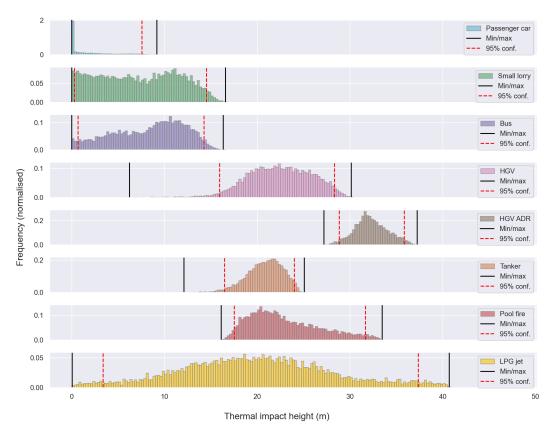
- Typical first pass critical temperatures: 300 °C main cables
- 500 C main cables
- $550 \ ^{o}C$ secondary steel elements
- 500 °C concrete piers

#2 Thermal impact assessment

Use of numeircal tools

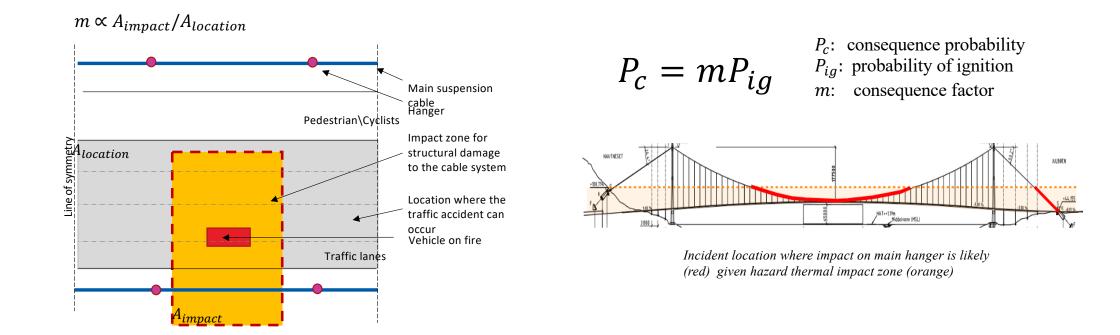

- Thermal impact problem can be solved with numerical tools of various degree of complexity
- Observe consistent level of crudeness
- Initially, quick models with numerous trials favoured over computationally inside ones

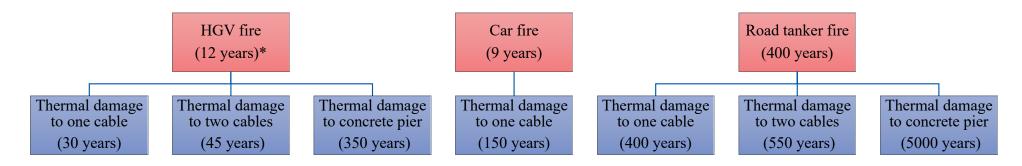
Radiation panel model



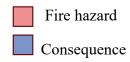
#2 Thermal impact assessment

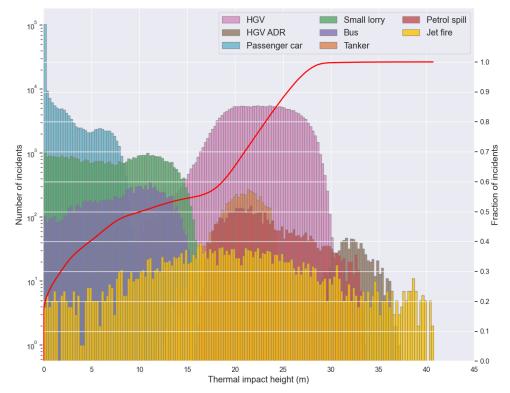
#2 Thermal impact assessment


Probabilistic study


Estimation of confidence intervals for each hazard considering the variable nature of input parameters:

- Wind conditions
- Traffic
- Incident location
- Fire severity

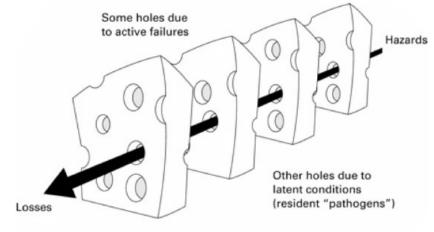

#3 Consequence frequency assessment


#3 Consequence risk assessment

*event mean annual return period

#3 Consequence risk assessment

Combined distribution of all investigated hazards informing the likely impact height from 100,000 different incidents.


Assess relative contribution of each hazard to the overall risk profile

#4 Risk mitigation strategy

Design risk mitigation strategy

- Operational/Management
- Design features
- Passive fire protection system
- Active fire intervention

Successive layers of defences, barriers and safeguards

Research and development

Arup University

Scientific Paper

Reliability-based Fire Protection of Structural Cables due to Deck Fires on Cable Supported Bridges

Panagiotis Kotsovinos ▼ (Dr, Eng.), Yavor Panev (Eng.), Heikki Lilja (Eng.), Atte Mikkonen (Eng.), Alberto Carlucci (Eng.) & Peter Woodburn (Dr, Eng.) Pages 576-585 | Published online: 10 Aug 2023

Invest in Arup – Global Research

Quantifying the fire performance of structural cables: knowledge gaps and R&D

'An investigation of the correlation between centreline temperature of large hydrocarbon fires and wind speed.' by Katarzyna Jaworska Supervised by Dr Ricky Carvel

Fire Performance of Structural Cables: Current Understanding, Knowledge Gaps, and Proposed Research Agenda

Panagiotis Kotsovinos, Ph.D.¹; Ryan Judge, Ph.D., CEng.²; Gary Walker, Ph.D., CEng.³; and Peter Woodburn, Ph.D., CEng.⁴

Analysis of the Thermomechanical Response of Structural Cables Subject to Fire

Panagiotis Kotsovinos (b), Ove Arup & Partners, London, UK

Athina Atalioti, Neil McSwiney, and Francesca Lugaresi, Department of Civil and Environmental Engineering, Imperial College London, London, UK

- Guillermo Rein , Department of Mechanical Engineering, Imperial College London, London, UK
- Adam J. Sadowski* , Adam J. Content of Civil and Environmental Engineering, Imperial College London, London, UK

Received: 5 October 2018/Accepted: 5 July 2019

