

Flame spread in large compartment experiments: comparison of **Obora and** CodeRed

By Harry Mitchell

Large compartments and mass timber

Large compartments and mass timber

- Detection
- Evacuation
- Firefighter response
- Structural response

Current mass timber compartment fire experimentation

Large Open-Plan Compartment Fire Experiments: Obora and CodeRed

Large Open-Plan Compartment Fire Experiments:

Experiment series (3)

Open-plan concrete compartment

380m² compartment (35.5 x 10.8 m, 20% ventilation)

Varying movable fuel load

	x-ONE	x-TWO.1	x-TWO.2	
Fuel load density (MJ/m ⁻²)	370*	345	273	
Addition of wood fibreboard throughout crib				

Large Open-Plan Mass Timber Compartment Fire Experiments: CodeRed

Large Open-Plan Mass Timber Compartment Fire Experiments: CodeRed

Experiment series (3)

Open-plan mass timber compartment

352m² floor area (34.3 x 10.3)

CLT ceiling and glulam columns

Varying **ventilation** and mass timber **protection**

CodeRed #	01	02	04
Ventilation area (m ²)	57	28	57
Opening factor (m ^{1/2})	0.071	0.039	0.071
Area of exposed timber (m ²⁾	352	352	183
Movable fuel load (MJ m ⁻²)	374	377	394

Summary

x-ONE – Baseline with fibreboard in fuel load

x-TWO.1 – Baseline

x-TWO.2 – reduced fuel load (-20%)

CodeRed #01 – mass timber ceiling

CodeRed #02 – reduced ventilation (-50%)

CodeRed #04 – partially encapsulated timber ceiling (-50%)

Large Open-Plan Mass Timber Compartment Fire Experiments: CodeRed

Flame spread results

Obora

Flame spread results: CodeRed #01

Crib flame spread

 Reduction of fuel load reduces flame spread rates significantly

Crib flame spread

- Reduction of fuel load reduces flame spread rates significantly
- Mass timber accelerates crib flame spread after ceiling ignition
- Reduction of ventilation slightly delays ceiling ignition and rapid flame spread

Crib flame spread – key behaviours

- Initial flame spread in all experiments occurred slowly (2.1 – 3.3 mm s⁻¹), depending on crib
- Flame spread accelerated in x-ONE and x-TWO.1 after formation of smoke layer (34 67 mm s⁻¹).
- x-TWO.2 did not spread as rapidly
- Flame spread accelerated in CodeRed post- ceiling ignition (97 – 161 mm s⁻¹)
- During rapid flame spread, flames first spread along upper layers of fuel load
- Moisture content is an important consideration

Ceiling flame spread

- Ceiling ignition occurred at similar times in CodeRed #01 and #02, but significantly later (~ 24 min) in #04.
- Flames spread rapidly in #01 (200 mm s⁻¹) and #02 (153 mm s⁻¹)
- Ceiling flame spread was slower (-23%) in CodeRed #02 than #01 – deeper and denser smoke layer
- Flame spread was significantly faster in #04 (533-1260 mm s⁻¹)

Ceiling flame spread – flashing waves

Other factors with mass timber flame spread

- Managing movable fuel load
- Sprinklers & water mist systems (CodeRed #03)
- If partial encapsulation, where?

Summary

- Flame spread is an important phenomena in large compartments (timber & concrete!).
- Reducing the movable fuel load can reduce flame spread rates significantly.
- Exposed timber ceilings can rapidly increase flame spread rates inside compartment once ignited.
- Ventilation had minimal impact on flame spread rate on crib, but significant on ceiling.
- Partial encapsulation can delay rapid flame spread, but does not prevent it entirely.
- Flame spread inside compartments is a complex process that requires further study.

Engineering and Physical Sciences Research Council

Thank you!

Backup slides

Crib spread rates

arg pen-Pla imber Co xpe nts: CodeRed

-

00