STRUCTURAL PERFORMANCE OF INTERMODAL STEEL CONTAINER STRUCTURES AT ELEVATED TEMPERATURES

Tabea Uhr BSc MSc AIFireE IMEEM

Principal Fire Engineer

6

SOCOTEC

AGENDA

- 1. Introduction
- 2. Assumptions
- 3. Thermal analysis
- 4. Structural analysis
- 5. Conclusions

INTRODUCTION

89 7

STEEL CONTAINER BUILDINGS

Multiple uses and occupancies:

- Single-storey and multi-storey structures
- Residential premises
- Student accommodation
- ➢ Hotels
- Temporary housing / disaster relief

Figure 1: Quadrum Ski and Yoga Resort , in Gudauri, Georgia (1)

OBJECTIVE

- Investigate if the prescriptive fire protection provisions are applicable for intermodular structures
- Performance of intermodular structures under natural fire conditions
- \rightarrow Structural fire engineering assessment

ASSUMPTIONS

FIRE SCENARIOS

STEEL CONTAINER STRUCTURE

- Steel columns, longitudinal and transversal beams
- Cold-formed steel joists
- Dry-lined stud walls
- Plywood flooring

Figure 4: Container structure - Dimensions

STEEL CONTAINER STRUCTURE

PRESCRIPTIVE FIRE PROTECTION FOR THE STRUCTURE

Figure 6: Connection point between four containers and protection of steel members

3 THERMAL ANALYSIS

Figure 9: Temperature distribution through a compartment wall between two flats

TEMPERATURE RESULTS

Steel temperature in each member below 550 degrees (i.e. the critical temperature)

But:

- Expansion of the compartment and slower expansion in the adjacent compartment
- Cooling on the exposed side and heating of the adjacent compartment

Figure 10: Temperature differences between adjacent compartments (corner point)

4 STRUCTURAL ANALYSIS

7

CONTROL

SOCOTEC

BUILDING

RESULTS – 2D MODEL (3X3 ARRANGEMENT)

RESULTS – 2D MODEL (3X3 ARRANGEMENT)

Figure 12: Deformation of the YZ plane – Time: 150 min, Scale: x8

RESULTS – 3D MODEL (3X3 ARRANGEMENT)

Figure 13: Deformation of the YZ plane (3D) - Time: 150 min, Scale: x8

Significant failure of the central beam due to out-of-plane buckling around the weak axis

Significant failure of the wind braces out-ofplane

ASSESSMENT OF THE CONNECTION

Figure 15: Deformation considering rigid joints, Time: 150 min, Scale: x8

Figure 14: Deformation considering soft joints, Time: 150 min, Scale: x8

ASSESSMENT OF THE CONNECTION

Figure 16: Deformation considering soft joints (3D), Time: 150 min, Scale: x8

5 CONCLUSION

CONCLUSION AND SUMMARY

- Prescriptive guidance:
 - Critical temperature achieved; but
 - rate of deflection (mm/min) is not achieved.
- General observations:
 - Anticipated failure of connection points due to deformation or stresses;
 - Detailed research should be done on connections and interaction between modules.

Thank you for your attention! Please feel free to ask questions!

6 6 02 he presentation

REFERENCES

(1) <u>Quadrum Gudauri Ski & Yoga Resort official hotel website (quadrum-gudauri.com)</u>

(2) <u>Starburst House — WHITAKER STUDIO</u>

CREDITS TO:

Felipe Herrera and Gabriel Risco

