MULTI-FIDELITY MODELLING OF GLULAM BEAM AND COLUMN CONNECTION UNDER SCENARIO FIRE LOAD

9/26/24

Dr. Solomon Tesfamariam, P.Eng.

Professor, University Research Chair Department of Civil and Environmental Engineering

Tongchen Han, PhD student

Forestry Innovation Investment

STRUCTURES IN FIRE FORUM – 10TH MAY 2024 NOVOTEL LIVERPOOL PADDINGTON VILLAGE

MOTIVATION

Multi-fidelity modelling of glulam beam and column connection under scenario fire load PAGE 3

FPInnovations' CLT handbook

State-of-the-art peer-reviewed technical source for designers that facilitates use of CLT as alternative solution (2013)

Multi-fidelity modelling of glulam beam and column connection under scenario fire load

<image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image>

"Tall Wood" initiatives

Multi-fidelity modelling of glulam beam and column connection under scenario fire load PA

FACULTY OF ENGINEERING

PAGE 5

Origine, Quebec City (13 Storeys)

Multi-fidelity modelling of glulam beam and column connection under scenario fire load

PAGE 6

FACULTY OF ENGINEERING

https://www.thinkwood.com/ourprojects/origine-tallest-wood-building-ineastern-north-america

Brock Commons, UBC Vancouver (18 Storeys)

https://www.thinkwood.com/ourprojects/brock-commons-tallwood-house

Multi-fidelity modelling of glulam beam and column connection under scenario fire load PAGE 7

B.C. building code adjusted upwards to allow 12-storey wood buildings

"...the building code changes come one year ahead of expected changes in the national building code, which are also expected to increase height limits for wood buildings to 12 storeys..."

2019

B.C. building code to allow mass timber in buildings up to 18 storeys, up from 12

- Increased the height limit for mass timber residential and office buildings to 18 storeys,
- Expanded the types of buildings that can be constructed with mass timber to include schools, shopping centres and industrial facilities, and

2024

• Allowed more exposed mass timber or fewer layers of encapsulation in buildings (depending on building height).

B.C. building code to allow mass timber in buildings up to ?? storeys, up from 18

Multi-fidelity modelling of glulam beam and column connection under scenario fire load PAG

PAGE 10

Multi-hazard performance based design

Tesfamariam, S. 2022. Performance-based design of tall timber buildings under earthquake and wind multi-hazard loads: Past, present and future. *Frontier in Built Environment: Earthquake Engineering*, 8:848698. doi: 10.3389/fbuil.2022.848698.

FIRE RESEARCH AND SAFETY

University of Waterloo Fire Research Group

Multi-fidelity modelling of glulam beam and column connection under scenario fire load PAGE 13

Multi-fidelity modelling of glulam beam and column connection under scenario fire load

CLT SHEAR WALLS – TIMBER MOMENT RESISTING FRAMES

Multi-fidelity modelling of glulam beam and column connection under scenario fire load PAGE 15

CLT-balloon shear-walls

FACULTY OF ENGINEERING

Multi-fidelity modelling of glulam beam and column connection under scenario fire load P

PAGE 16

Uncoupled CLT walls

Energy dissipation BRB hold-down

Multi-fidelity modelling of glulam beam and column connection under scenario fire load PAGE 17

Fully coupled CLT walls

Teweldebrhan, B.T. and Tesfamariam, S. 2023. Seismic design of CLT shear-wall and glulam moment-resisting frame coupled structure. *Journal of Structural Engineering*. 149(12):04023169.

HIGH-FIDELITY MODEL AND CALIBRATION

Multi-fidelity modelling of glulam beam and column connection under scenario fire load PAGE 20

Beam-column joint test

Loading test under ISO fire heating

Luo, J., He, M., Li, Z., Gan, Z., Wang, X., and Liang, F. 2022. Experimental and numerical investigation into the fire performance of glulam bolted beam-to-column connections under coupled moment and shear force. *Journal of Building Engineering*, 46, 103804.

Dimensions and mechanical properties

Multi-fidelity modelling of glulam beam and column connection under scenario fire load PAGE 22

Dimensions and mechanical properties

Material properties	Elastic modulus (MPa)	$f_y(MPa)$	$f_u(MPa)$	€u
Steel plate	210000	345	470	0.1
Bolts	210000	640	800	0.1

Material properties -	Elastic modulus (MPa)			Poisson's ratio			Syrength (MPa)			
	E_1	E_2/E_3	$G_{1,2}/G_{1,3}$	G _{2,3}	$v_{1,2}/v_{1,3}$	v _{2,3}	f_1	f_2/f_3	$f_{1,2}/f_{1,3}$	<i>f</i> _{2,3}
Timber	11534	313	639	108	0.37	0.44	44.03	2.03	7.58	2.16
Bolt hole region	2503	560	432	194	0.37	0.44	44.03	2.03	7.58	2.16

Multi-fidelity modelling of glulam beam and column connection under scenario fire load PAGE 23

Dimensions and mechanical properties

Loading under ambient temperature

Elements and boundary conditions

S Mises Ava: 75%) Displacement-controlled S. Mises Experimental results load High-fidelity model 40 Moment (kN-m) Beam (C3D8R) Symmetry constraint 20 00 Bolt (C3D8R) 12 Rotation (10-2 rad) Steel plate (C3D8R) Bending deformation (bolts) Column (C3D8R) Embedment deformation (timber) Fixed UNIVERSITY OF FACULTY OF WATERLOO PAGE 25 Multi-fidelity modelling of glulam beam and column connection under scenario fire load ENGINEERING

Loading curve and model deformation

Heat transfer analysis

Structural analysis

LOW-FIDELITY MODEL AND CALIBRATION

Multi-fidelity modelling of glulam beam and column connection under scenario fire load PAGE 28

Development of simplified numerical model

Multi-axis loading calibration

Model validation

Uncertainty propagation

Multi-fidelity modelling of glulam beam and column connection under scenario fire load PAGE 32

Uncertainty propagation

Multi-fidelity modelling of glulam beam and column connection under scenario fire load PAGE 33

Contact information

Dr. Solomon Tesfamariam, P.Eng. Professor, University Research Chair Department of Civil and Environmental Engineering University of Waterloo Waterloo, ON

solomon.tesfamariam@uwaterloo.ca

Tall Timber Design: Past, Present and Future

UNIVERSITY OF WATERLOO

FACULTY OF ENGINEERING

Our greatest impact happens together.

Resilient and sustainable Tall-Timber buildings

PAGE 35