Structural fire simulations in timber heritage buildings

WULAN SHOFA AISYAH

University College London

Supervisors:

Jose Torero Cullen, Augustin Guibaud, Alejandra Albuerne

1

Structures in Fire Forum – May 2024

Recent fires in historic buildings

Before fire

16 April 2024 Børsen fire, Copenhagen

15 April 2019 Notre Dame fire, Paris

After reconstruction

Fire protection: historic structures are not old versions of modern buildings

Can numerical modelling predict the failure mechanisms of a historic timber structure in a fire?

Methodology:

- 1- Develop and validate a large-scale fire model
- 2- Develop and validate a structural model
- 3- Integrate coupling mechanisms

1- Fire modelling: Computational Fluid Dynamics (CFD)

Dozens of degrees of freedom in the model !

Mesh and boundaries

1- CFD validation: learning across scales

1.1-Small-scale validation: Delichatsios, 1976

Spread rate (mm/s)				
Crib number	1	4	9	13
Experiment	1.9	1.3	4.6	2.4
Simulation	3.0	0.8	6.2	22.0

- Right mechanism, overall good agreement of flame spread rates
- Need improvement: Influence of element size

1.2-Large-scale validation: CodeRed, 2021

100 cm

1.2-Large-scale simulation: heat of combustion

- Can capture the burning mechanism, but much faster flame spread rates
- Flaming and glowing combustion → Heat of combustion

1.3- Extracting data from the 2019 Notre Dame fire

1.3- Extracting data from the 2019 Notre Dame fire

2-2D structural model of an A-frame before the fire

3- Future works: fire modelling \rightarrow structural modelling

Thermal model
Temperature within the material

 Mechanical model Reduction in strength and expansion

3- Fire-structure interaction during the fire

- Batten and lead disappear
- Elements failure
- Develop a pile of fuel beneath the structure

Conclusions

1- Fire modelling

CFD can adequately capture the fire mechanism, however, the definition of the heat of combustion in largescale simulation has a significant influence and needs further investigation.

Future works:

2- Structural modelling

Future works regarding structural analysis, with a multi-scale approach where analysis of the joints and elements are being done.

3- Fire-structure interaction \rightarrow Improving fire strategies

Fire modelling: temperature field, visibility Structural models: critical elements, collapse mechanism

Thank you for your attention! Any questions?

