

The new Eurocode 2-1-2: BS EN 1992-1-2:2023

Jenny Burridge MA CEng FIStructE MICE

Eurocode 2-1-2

BS EN 1992-1-2:2023

BS EN 1992-1-2:2004+A1:2019 Incorporating corrigendum July 2008

Eurocode 2: Design of concrete structures

Part 1-2: General rules - Structural fire design

Second generation published November 2023

Eurocode 2 — Design of concrete structures

Part 1-2: Structural fire design

Eurocode 2: Part 1.2 Structural Fire Design

- 0-3 General
- 4 Basis of fire design
- 5 Material properties
- 6 Tabulated data
- 7 Simplified design methods
- 8 Advanced design methods
- 9 Detailing
- 10 Rules for spalling
- Annex A Lightweight concretes
- Annex B Steel fibres
- Annex C Recycled aggregates
- Annex D Slender columns
- Annex E Additional tabulated data for walls

94 Pages

Basis of Fire Design

- Verification methods $E_{d,fi} \leq R_{d,fi,t}$
- Member Analysis $E_{d,fi} = \eta_{fi} E_d$ (1991-1-2)
 - $E_{\rm d}$ is the design value for normal temperature design
 - $\eta_{\rm fi}\,$ is the reduction factor for the fire situation

 $\eta_{fi} = (G_k + \psi_{fi} Q_{k.1}) / (\gamma_G G_k + \gamma_{Q.1} Q_{k.1})$

(4.2)

Design Procedures

- Tabulated data (Clause 6)
- Simplified calculation methods (Clause 7)
- Advanced calculation method (Clause 8)

Thermal conductivity

• Merged high and low curves for thermal conductivity

5.2.2 Thermal conductivity

(1)	The thermal conductivity $\lambda_{c}(\theta_{c})$ of concrete should be taken as:	
	$\lambda_{\rm c}(\theta_{\rm c}) = 2 - 0.2451 (\theta_{\rm c}/100) + 0.0107 (\theta_{\rm c}/100)^2 (W/({\rm m~K}))$	for $\theta_{\rm c} \leq 140$ °C
	$\lambda_{\rm c}(\theta_{\rm c}) = -0.02604 \ \theta_{\rm c} + 5.324 \ ({\rm W}/({\rm m~K}))$	for 140 < $\theta_{\rm c}$ < 160 °C
	$\lambda_{\rm c}(\theta_{\rm c}) = 1,36 - 0,136 \ (\theta_{\rm c}/100) + 0,0057 \ (\theta_{\rm c}/100)^2 \ (W/({\rm m~K}))$	for 160 °C ≤ θ _c ≤ 1 200 °C

Specific heat

concrete with siliceous or calcareous aggregates at elevated temperatures									
Concrete temp.									
θ	$f_{\rm ck} < 7$	0 MPa	$f_{\rm ck} \ge 70 {\rm MPa}$	ε _{cl,θ}	$\varepsilon_{\mathrm{cul},\theta}$				
	Siliceous aggregates	Calcareous aggregates	any type of aggregates						
[°C]	[-]	[-]	[-]	[-]	[-]				
1	2	3	4	5	6				
20	1,00	1,00	1,00	0,0025	0,0200				
100	1,00	1,00	0,75	0,0040	0,0225				
200	0,95	0,97	0,75	0,0055	0,0250				
300	0,85	0,91	0,75	0,0070	0,0275				
400	0,75	0,85	0,75	0,0100	0,0300				
500	0,60	0,74	0,60	0,0150	0,0325				
600	0,45	0,60	0,45	0,0250	0,0350				
700	0,30	0,43	0,30	0,0250	0,0375				
800	0,15	0,27	0,15	0,0250	0,0400				
900	0,08	0,15	0,08	0,0250	0,0425				
1 000	0,04	0,06	0,04	0,0250	0,0450				
1 100	0,01	0,02	0,01	0,0250	0,0475				
1 200	0,00	0,00	0,00	_	-				
NOTE The	values at 20°C are	e conventional va	lues to be used for	r calculations in a	fire situation.				

The softening branch is indicated for the purpose of numerical calculations.

Table 5.1 — Values for the main parameters of the stress-strain relationships of normal weight

(EN1992-1-2:2023)

Cooling and cooled concrete

Table 5.3 — Values for the parameters of the stress-strain relationship of hot rolled and cold worked reinforcing steel at elevated temperatures

Steel temperature	$k_{\mathrm{sy},\theta} = j$	f _{sy,0} /f _{yk}	$k_{\rm sp,\theta} = j$	f _{sp,θ} /f _{yk}	$k_{\text{se},\theta} = f_{\text{se},\theta} / f_{\text{yk}}$	$k_{\mathrm{Es},\theta} = E_{\mathrm{s},\theta}/E_{\mathrm{s}}$		
θ [°C]	hot rolled	cold worked	hot rolled	cold worked	hot rolled or cold worked	hot rolled	cold worked	
1	2	3	4	5	6	7	8	
20	1,00	1,00	1,00	1,00	1,00	1,00	1,00	
100	1,00	1,00	1,00	0,96	1,00	1,00	1,00	
200	1,00	1,00	0,81	0,92	0,95	0,90	0,87	
300	1,00	1,00	0,61	0,81	0,90	0,80	0,72	
400	1,00	0,94	0,42	0,63	0,85	0,70	0,56	
500	0,78	0,67	0,36	0,44	0,60	0,60	0,40	
600	0,47	0,40	0,18	0,26	0,35	0,31	0,24	
700	0,23	0,12	0,07	0,08	0,10	0,13	0,08	
800	0,11	0,11	0,05	0,06	0,08	0,09	0,06	
900	0,06	0,08	0,04	0,05	0,06	0,07	0,05	
1 000	0,04	0,05	0,02	0,03	0,04	0,04	0,03	
1 100	0,02	0,03	0,01	0,02	0,02	0,02	0,02	
1 200	0,00	0,00	0,00	0,00	0,00	0,00	0,00	

Section 6. Tabulated Data

Provides design solutions for the standard fire exposure up to 4 hours

- The tables have been developed on an empirical basis confirmed by experience and theoretical evaluation of tests
- Values are given for normal weight concrete made with siliceous aggregates. Minimum dimensions can be reduced by 10% if using calcareous aggregates.
- Tabulated data shouldn't be used for R 180 and R240 if $f_{ck} \ge 70$ MPa
- No further checks are required for shear, torsion or anchorage
- Linear interpolation may be used, extrapolation shouldn't be used.

Columns Tabular Approach

- Two approaches
- Method A is only for braced structures
- Annex D covers both braced and unbraced columns by considering slenderness

Effective length

Columns: Method A

	Minimum dimensions										
Standard fire resistance		(mm)									
	Column width b_{\min}	/axis distance <i>a</i> of the m	ain reinforcement								
	$\mu_{\rm fi}$ = 0,2	$\mu_{\rm fi} = 0.5$	$\mu_{\rm fi}=0,7$								
1	2	3	4								
R 30	200/25	200/25	200/32								
			300/27								
R 60	200/25	200/36	250/46								
		300/31	350/40								
R 90	200/31	300/45	350/53								
	300/25	400/38	450/40ª								
R 120	250/40	350/45ª	350/57ª								
	350/35	450/40ª	450/51ª								
R 180	350/45ª	350/63ª	450/70ª								
R 240	350/61ª	450/75ª	_								
OTE 1 For prestrea OTE 2 Table 6.1 ha	ssed columns, the increase of ax as been generated from Formula in be used for columns exposed	tis distance according to 6.2(a (6.6) with <i>l</i> _{0,fi} = 3 m.	– 2) should be noted.								

 $\mu_{\rm fi} = N_{\rm Ed,fi} / N_{\rm Rd}$

 $N_{\rm Ed,fi}$ is the design axial load in the fire condition

 $N_{\rm Rd}$ is the design axial resistance at normal temperature for an effective length = $2l_{0,fi}$

The Concrete Centre

Limitations to Method A

- The structure is braced
- Effective length of the column under fire conditions
 - $l_{0,fi} \leq 3m$ and $l_0 \leq 6m$ (rectangular sections)
 - $l_{0,fi} \le 2.5m$ and $l_0 \le 5m$ (circular sections)
- First order eccentricity under fire conditions:

 $M_{0Ed,fi}$ / $N_{Ed,fi} \le 0.25 h$

• Amount of reinforcement:

 $A_{\rm s} \leq 0.04 A_{\rm c}$

Method B - Annex D

Table D.4 — Maximum permissible effective column length l_0 for braced and unbraced columns: R 90

		l	l _{o,fi} = 1,0 <i>l</i>	0	0,1	$\leq \omega_{\rm mod} \leq$	1,0												
	<i>b</i> (mm):		≥ 600			500			400			350			300			250	
	$\mu_{\rm FI}$:	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,4	0,5
e ₀	a (mm)		l _{0,max} (m)			<i>l</i> 0,max (m)			l _{0,max} (m)			lo,max (m)			<i>l</i> 0,max (m)			l _{0,max} (m)	
20 mm	30	8,9	6,6	3,1	6,9	5,1		4,8	2,8		3,7	1,9		2,3					
20 mm	40	9,2	7,8	5,4	7,2	6,0	3,5	5,1	4,2	25	4,0	3,2	25	2,8	2.6		2.2		
20 mm 20 mm	55 70	10,4 12,0	8,8 9,7	7,3 8,3	8,2 9,2	6,8 7,5	5,5 6,2	5,9 6,5	4,7 5,2	3,5 3,9	4,6 5,1	3,7 4,0	2,5 2,8	3,4 3,6	2,6 2,7		2,2 2,2		
0,25 b	30	5,4	4,0	0,5	4,2	2,9	0,2	2,9	3,2	3,9	2,1	4,0	2,0	3,0	2,7		4,4		
0,25 b	40	5,4 7,1	5,0	3,1	5,5	3,9		3,8	2,5		3,0	1,8		1,6					
0,25 b	55	11,4	7,1	5,1	8,5	5,3	3,9	5,7	3,6	2,0	4,4	2,7		2,8					
0,25 b	70	24,0	8,8	6,6	20,0	6,6	4,8	8,1	4,3	2,5	6,0	3,1		3,4	2,0				
0,50 b	30	,-	-,-			-,-	-,-	-,-	-,-			- /-		-,-					
0,50 b	40	7,4			5,6			3,6			2,2								
0,50 b	55	21,5	8,0		15,9	5,8		10,4	3,1		7,9			4,0					
0,50 b	70	24,0	12,5	5,4	20,0	9,5		16,0	5,7		14,0	3,7		6,2					
		l	l _{o,fi} = 0,7 <i>l</i>	0	0,1	$\leq \omega_{\mathrm{mod}} \leq$	1,0												
	<i>b</i> (mm):		≥ 600			500			400			350			300			250	
	$\mu_{\rm FI}$:	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,4	0,5
e ₀	a (mm)		l _{0,max} (m)			<i>l</i> 0,max (m)			l _{0,max} (m)			lo,max (m)			<i>l</i> _{0,max} (m)			lo,max (m)	
$20~\mathrm{mm}$	30	12,9	10,4	5,2	10,1	7,8		7,1	4,3		5,5	3,0		3,5			2,2		
$20 \mathrm{mm}$	40	13,6	11,9	8,9	10,5	9,1	6,0	7,4	6,3		5,9	5,1		4,1	1,9		2,8	2,2	
20 mm	55	17,3	13,9	11,9	14,0	10,7	9,1	9,6	7,4	5,9	7,6	5,8	4,3	5,1	4,0	2,0	3,4	3,0	2,4
20 mm	70	24,0	16,6	14,1	20,0	12,6	10,5	11,5	8,4	6,8	8,9	6,5	4,9	5,7	4,3	2,6	3,6	3,1	2,5
0,25 b	30	8,4	5,7	F 7	6,4	4,1		4,3	2,5		3,2	2.7		2.4					
0,25 b	40	13,1	7,9	5,7	9,9	6,0	()	6,4	3,8	4.0	4,9	2,7	25	2,4	25		2.0	1.0	
0,25 <i>b</i> 0,25 <i>b</i>	55 70	24,0	17,3 24,0	9,4 17,3	20,0	12,4 20,0	6,8 11,3	16,0 16,0	6,8 16.0	4,0	14,0	4,6 14.0	2,5 3,6	6,8 12,0	2,5 3,3		3,0 4,6	1,9 2,4	
0,25 b 0,50 b	30	24,0	24,0	17,5	20,0	20,0	11,5	10,0	16,0	5,4	14,0	14,0	3,0	12,0	3,3		4,0	2,4	
0,50 b 0,50 b	30 40	18,6			13,4			8,4			5,9								
0,50 b	55	24,0	24,0		20,0	20,0		16,0	10,7		14,0	6,4		12,0			6,9		
				1	20.0	20,0		10,0	1 10.7		11.0	0.1		1 12.0	1	1	0,7	1	1

Parameters required for Annex D

b, *h* Dimensions of column cross-section, $b \le h$;

- $\mu_{\rm fi}$ Degree of utilization in the fire situation: $\mu_{\rm fi} = \frac{\left|N_{\rm Ed,fi}\right|}{N_{\rm Rd}}$;
- e_0 First order eccentricity of the axial forces, equal for N_{Rd} and $N_{\text{Ed,fi}}$;
- *a* Axis distance of the main reinforcing steel bars;
- ω_{mod} Modified mechanical reinforcement degree $\omega_{\text{mod}} = \frac{2\min(A_{s0}, A_{s1})f_{yd}}{A_{c}f_{cd}}$, while A_{s0} and A_{s1}

are defined in (5);

- $N_{\rm Ed,fi}$ The design axial load in the fire condition;
- $N_{\rm Rd}$ The design axial load resistance under ambient condition.

Worked example

300 x 300 column, C30/37 concrete, storey height of 3.5m at top of building with 4H12 bars as main rebar. Check that this is suitable for an R90 requirement.

- Take μ_{fi} = 0.3, e_0 = 75mm, a = 45mm
- Calculate ω : 4H12 = 452mm²
- $\omega = A_s f_{yd} / A_c f_{cd} = (452*435) / (300^{2*}17) = 0.13$
- Take l_{0,fi} = 0.7 l
- From table

Annex D

Table D.4 — Maximum permissible effective column length l_0 for braced and unbraced columns: R 90

		l	o,fi = 1,0 <i>l</i>	0	0,1	$\leq \omega_{mod} \leq$	1,0												
	<i>b</i> (mm):		≥ 600			500			400			350			300			250	
	$\mu_{\rm FI}$:	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,4	0,5
eo	a (mm)		l _{0,max} (m)			<i>l</i> 0,max (m)			l _{0,max} (m)			l _{0,max} (m)			<i>l</i> 0,max (m)			lo,max (m)	
$20~\mathrm{mm}$	30	8,9	6,6	3,1	6,9	5,1		4,8	2,8		3,7	1,9		2,3				ľ	
$20~\mathrm{mm}$	40	9,2	7,8	5,4	7,2	6,0	3,5	5,1	4,2		4,0	3,2		2,8					
$20 \mathrm{mm}$	55	10,4	8,8	7,3	8,2	6,8	5,5	5,9	4,7	3,5	4,6	3,7	2,5	3,4	2,6		2,2		
$20 \mathrm{mm}$	70	12,0	9,7	8,3	9,2	7,5	6,2	6,5	5,2	3,9	5,1	4,0	2,8	3,6	2,7		2,2		
0,25 b	30	5,4	4,0		4,2	2,9		2,9			2,1								
0,25 b	40	7,1	5,0	3,1	5,5	3,9		3,8	2,5		3,0	1,8		1,6					
0,25 b	55	11,4	7,1	5,4	8,5	5,3	3,9	5,7	3,6	2,0	4,4	2,7		2,8					
0,25 b	70	24,0	8,8	6,6	20,0	6,6	4,8	8,1	4,3	2,5	6,0	3,1		3,4	2,0				
0,50 b	30																		
0,50 b	40	7,4			5,6			3,6			2,2								
0,50 b	55	21,5	8,0		15,9	5,8		10,4	3,1		7,9			4,0					
0,50 b	70	24,0	12,5	5,4	20,0	95		16,0	5,7		14,0	3,7		6,2					
		i	_{0,fi} = 0,7 <i>l</i>	0	0,1	$\leq \omega_{\rm mod} \leq$	1,0												
	<i>b</i> (mm):		2 600			500			400			350			300			250	
	$\mu_{\rm FI}$:	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,5	0,7	0,3	0,4	0,5
eo	a (mm)		<i>l</i> _{0,max} (m)			<i>l</i> _{0,max} (m)			<i>l</i> _{0,max} (m)			<i>l</i> _{0,max} (m)			l _{0,max} (m)			<i>l</i> 0,max (m)	
$20 \mathrm{mm}$	30	12,9	10,4	5,2	10,1	7,8		7,1	4,3		5,5	3,0		3 5			2,2		
$20 \mathrm{mm}$	40	13,6	11,9	8,9	10,5	9,1	6,0	7,4	6,3		5,9	5,1		41	1,9		2,8	2,2	
$20 \mathrm{mm}$	55	17,3	13,9	11,9	14,0	10,7	9,1	9,6	7,4	5,9	7,6	5,8	4,3	51	4,0	2,0	3,4	3,0	2,4
$20 \mathrm{mm}$	70	24,0	16,6	14,1	20,0	12,6	10,5	11,5	8,4	6,8	8,9	6,5	4,9	57	4,3	2,6	3,6	3,1	2,5
0,25 b	30	8,4	5,7		6,4	4,1		4,3	2,5		3,2			•					
0,25 b	40	13,1	7,9	5,7	9,9	6,0		6,4	3,8		4,9	2,7		2,4					1
0,25 b	55	24,0	17,3	9,4	20,0	12,4	6,8	16,0	6,8	4,0	14,0	4,6	2,5	6,8	2,5		3,0	1,9	1
0,25 <i>b</i>	70	24,0	24,0	17,3	20,0	20,0	11,3	16,0	16,0	5,4	14,0	14,0	3,6	12,0	3,3		4,6	2,4	
0,50 b	30																		
0,50 b	40	18,6			13,4			8,4			5,9								1
0,50 b	55	24,0	24,0		20,0	20,0		16,0	10,7		14,0	6,4		12,0			6,9		1
					1	20,0	1	16,0	16,0		14,0	14,0	1	12,0	1	1	10,0	1 '	1

Max effective length = 3.9m Actual effective length - 0.7*3.5 = 2.45m

Walls

Standard fire resistance		mum dimen (mm) ness h _w /axis		Standard fire resistance		mum dimen (mm) 1ess h _w /axis	
	$\mu_{fi}=0,2$	$\mu_{fi} = 0,5$	$\mu_{fi}=0,7$		$\mu_{fi}=0,2$	$\mu_{fi}=0,5$	$\mu_{fi}=0,7$
	Exposed o	n one side			Exposed on	both sides	
1	2	3	4	5	6	7	8
REI 30	100/10	110/10	120/10	R 30	100/10	120/10	130/10
REI 60	110/10	120/15	130/20	R 60	120/15	155/20	170/25
REI 90	120/20	135/25	140/30	R 90	140/20	185/30	210/35
REI 120	135/25	150/30	160/35	R 120	165/30	210/40	240/45
REI 1 80	155/35	170/40	180/45	R 180	200/45	250/50	280/55
REI 240	180/40	200/45	210/50	R 240	250/50	305/55	340/60

Walls

- Four tables given, two in the main part and two in Annex E
- Effective lengths of 2.5m, 4.5m, 6m and 8m
- Assume that $l_{0,fi}/l_0$ = 0.5 otherwise calculate N_{Rd} for an effective length of $2l_{0,fi}$
- Structure is braced
- First order eccentricity doesn't exceed 25% b
- Clear height to thickness \leq 40
- The exposure of the wall ends does not affect the fire resistance for walls exposed on both sides, provided the minimum axis distance is met.
- Interpolation between the tables is allowed

Continuous Beams

•Table 6.7

	Minimum dimensions (mm)										
Standard fire resistance		ombinations e axis distan of b	Web thickness b _{w,min}	Web thickness $b_{w,\min}$ for a length of 2h from an intermediate support							
1	2	3	4	5	6	7					
R 30	$b_{\min} = 80$	160	_	_	80	80					
	<i>a</i> = 15ª	12ª	_	_	_	_					
R 60	<i>b</i> _{min} = 120	200	_	_	100	120					
	<i>a</i> = 25	12ª	_	_	_	_					
R 90	$b_{\min} = 150$	250	_	_	110	150					
	<i>a</i> = 35	25	_	—	—	_					
R 120	$b_{\min} = 200$	300	450	500	120	200					
	<i>a</i> = 45	35	35	30	_	_					
R 180	$b_{\min} = 240$	400	550	600	140	240					
	<i>a</i> = 60	<u>50</u>	<u>50</u>	<u>40</u>	_	_					
R 240	<i>b</i> _{min} = 280	<u>500</u>	<u>650</u>	<u>700</u>	160	280					
	<i>a</i> = 75	<u>60</u>	<u>55</u>	<u>50</u>	_	_					

NOTE 1 For tensile and simply supported members subject to bending (except those with unbonded tendons), in which the critical temperature is different from 500 °C, see 6.2(3) for modifications to tabulated values.

NOTE 2 For *a*_{sd}, see 6.6.2(2)

Normally the cover required by EN 1992-1-1 will be larger.

Flat Slabs

	Minimum	dimensions						
Standard fire resistance	(mm)							
	slab-thickness <i>h</i>	axis-distance a						
1	2	3						
REI 30	150	10ª						
REI 60	180	15ª						
REI 90	200	25						
REI 120	200	35						
REI 180	200	45						
REI 240	200	50						
NOTE For tensile and simply support which the critical temperature is diffe		ept those with unbonded tendons), in						

^a Normally the cover required by EN 1992-1-1 will be larger.

Chapter 7: simplified design methods

The simplified formulae are based on the following assumptions:

- The emissivity related to the concrete surface is 0.7.
- The thermal conductivity of concrete is as given;
- The specific heat of concrete assumes a moisture content of 1.5 %, (the formulae are conservative for moisture contents greater than 1.5 %);
- The density of concrete at 20°C is 2300 kg/m³;
- The convection factor is $25 \text{ W/(m^2 \cdot K)}$.

General formula for one-sided exposure

$$\theta(x,t) = \theta_1(x,t) + 20[^{\circ}C]$$
$$\theta_1(x,t) = 345 \cdot \lg_{10} \left(\frac{7(t-\Delta t)}{60} + 1\right) \cdot \exp\left(-x\sqrt{\frac{k}{t}}\right)$$

(7.2)

- *t* is the duration of the standard fire (in seconds), $t \ge 1800$ s;
- *x* is the distance from the exposed surface (in m);
- $\Delta t = 720$ s represents a delay between the temperature in the fire compartment and the concrete surface temperature as an approximation for the effects of convection and radiation;

$$k = 3 \cdot 10^6 \,\mathrm{s/m^2} \tag{7.3}$$

Temperature profile

Spalling

Table 10.1 — Overview of the rules for spalling

Verification for spalling								
R15	Verification of spalling may be omitted except Clause 10(2)							
 structures in a water saturated environment insulating permanent formwork which prevents concrete from drying 	polypropylene fibres should be specified							
f_{ck} < 70 MPa and silica fume content < 6 % by weight of cement	Verification of spalling may be omitted except Clause 10(3) and (5)							
$f_{ck} < 70$ MPa and silica fume content ≥ 6 % by weight of cement or $f_{ck} \ge 70$ MPa	Specific assessment of spalling should be undertaken or polypropylene fibres should be specified See Clause 10(7), (8), (9) or (10)							

Spalling clauses

- 10(7) Protective layers can be used
- 10(8) Spalling can be taken into account by considering the loss of strength due to a reduced cross-section. The extent of spalling can be based on experimental assessment
- 10(9) If an experimental assessment is undertaken it should be based on representative conditions (geometry, stress and moisture content)
- 10(10) Polypropylene fibres (2kg/m³) can be used to mitigate spalling
- For lightweight concrete a specific assessment of spalling should be done whatever the strength of the concrete.

Recycled aggregates

- In Annex C, which is informative
- NA committee currently considering whether to adopt
- If 20% recycled aggregate or less are used then the typical properties can be assumed, otherwise properties should be based on experimental evidence.
- Specific assessment of spalling should be undertaken, or polypropylene fibres added

Thank you